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Abstract

In this paper, we describe a method to correct for chromatic
aberration in a single photograph. What is proposed is a
method for replicating what a user would do in a photo edit-
ing program to account for this defect. We obtain matching
keypoints in each colour channel and align them automati-
cally, as a user would manually.

1 Introduction

Chromatic aberration (also known as colour fringing) is a
phenomena where the different wavelengths of light refract
differently through different parts of a lens system. Thus the
colour channels may not align properly as they reach the sen-
sor/film. This is most notable in cheaper lenses, however it
is becoming more noticeable with higher resolution photos.
Why we would want an image free of chromatic aberrations
is simple, it is clearly not the optimal image as not all of the
planes are in focus. For a simple lens system this amounts
to the three colour channels (red, green and blue) being mis-
aligned by a uniform scaling and translation. For more com-
plicated lenses, this may not be the case as distortions may
be introduced. Also, there are many types of other chromatic
aberrations, however we only propose a method to deal with
the simple, more common scenario and possible ways to deal
with more complex ones.

2 Previous Work

Previous work in correcting chromatic aberration has been
initially used in domains where scientific accuracy is a must.
This usually takes place in a lab setting where there are heav-
ily constrained scenarios. One such method is in active op-
tics [Willson and Shafer 1991]. In active optics, instead of
just taking one exposure for all the colour channels simulta-
neously (like most digital cameras), they take three. One for
each channel with slightly different focal points, accounting
for the aberration in the lens so the three channels will be
aligned in the final result. The main drawback in this system

is it’s limitation to need to alter the hardware, as well as take
3 different exposures at 3 different points in time. This is
limiting especially for dynamic scenes, as the object may be
moving in that timespan.

Another method that has been proposed is to model the
edge displacements with cubic splines to compute a non-
linear warp of the image [Boult and Wolberg 1992]. This
method cannot handle blurring/defocus in the image plane
along with saturation effects. It breaks down in regions that
are either underexposed or overexposed.

A calibrated technique for lateral chromatic aberration
has been proposed where one directly calculates the aber-
rations and uses warping to compensate [Mallon and Whe-
lan 2007]. However, this only works for calibrated cam-
eras/images which may not be feasible for a more simple
user. It does employ colour plane realignment, which we
shall utilize as well.

Somewhat related is using chromatic aberrations as a cue
to retrieve depth information [Garcia et al. 2000]. This
demonstrates that it is a detectable and useful source of in-
formation without prior calibration.

Most recently, a full analysis of how aberrations are not
a simple shift of colour planes has been studied and can be
computed by using a non-linear warping to obtain the desired
result [Kang 2007]. This algorithm handles many different
cases of aberrations, which it categorizes in the paper. Its
only drawbacks are minor artifacts caused by saturations, as
well as being a non-linear solution so it may be quite slow.

Since we want to deal with the simple case, we may want
to remove perspective distortions. This has been done in
the past by a few different algorithms [Swaninathan et al.
2003]. If we remove the radial distortion cause by the lens,
we should end up with only needing to solve a transla-
tion/scaling of the different colour channels to align them.

Most recently, a metric L has been proposed in a paper
on extracting a depth matte from a colour filtered aperture
[Bando et al. 2008]. This metric measures how collinear and
correlated points are in 3D (essentially colour space). This
metric essentially is how misaligned colours are in RGB-
space, and they use it to find a disparity from their specially
designed colour filtered aperture.
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Figure 1: Left, a photo with chromatic aberration. Right is a possible correction for it. The original image is from Wikipedia.

3 Overview

Instead of concentrating on the optical derivation, we shall
instead consider a different one. The problem is the task that
an artist can manually align the colour channels of an im-
age with chromatic aberration to minimize the effect. They
align these different channels by moving the corners of the
different channels and essentially translating and scaling the
image. We shall attempt to replicate this artist driven result.

The main idea is to align two of the colour channels to the
third one. Usually, the green channel has the least amount of
aberration as it is in the middle of the colour spectrum and
won’t refract too much or too little. In some of the results,
we match to the red channel for simplicity. The result of
not choosing green is just a larger or smaller version of the
image instead of the correct scale, but it will still be aligned
properly.

We solve the alignment by finding keypoints in the fixed
channel, and finding where those keypoints are in the other
channel while trying to minimize a suitable metric. This is
similar to finding disparities in stereo, however in 3 channels
instead of two images. Once we have these matchings, we
can prune the results based on how well the matchings are.
Then we need to find a transformation from the non-fixed
planes to the fixed one, with restriction the warp be a scale
and translation.

In choosing a linear warp of the original colour channels,
we manage to preserve image details without introducing
any new artifacts that were not there. Also, since we use
only keypoints, issues arising from saturation will be easy to
deal with as we can be careful around those regions and not
choose a keypoint nearby.

3.1 Computing the Alignment Metric

Before we start describing how to find the keypoints, and
disparities, it is best to define how aligned the colour chan-
nels are. It is not suitable to do cross-correlation, as that only
tells us how aligned two colour channels are. We want to see
how aligned three are. As described above, there exists such
a metric L [Bando et al. 2008]. For a given neighbourhood
around a pixel (z, y), with eigenvalues of the covariance ma-

Figure 2: Left, is the L value computed at every pixel
of a photo with no chromatic aberration. Right, is the L
value computed for a photo with visible chromatic aberra-
tion. Note that in the second image, there is a non-zero value
for L over the majority of the image.
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This value is essentially how collinear the colour points in
this neighbourhood are in RGB-space. The lower this value
is, the more collinear the points are and the higher the less
collinear. As mentioned in the appendix of the paper, this
can be considered to be related to cross-correlation, and thus
is exactly what we want to use. How to choose this neigh-
bourhood size is a different story. The smaller it is, the less
statistics we have about that neighbourhood and thus may
have a worse matching. The larger it is, the better chance we
have of a matching, however the longer it takes. This value
is bounded between 0 and 1, as mentioned in the paper. If
we show this for every pixel as in figure 2, we can see that
images without chromatic aberration show very little mis-
alignment over the whole image.

Another justification of using this metric is that according
to the colour lines model [Omer and Werman 2004], colour
points in RGB-space of the whole image will lie along differ-
ent colour lines. If we look at smaller neighbourhoods, then
we can assume the points will also lie along either a line, or
intersection of lines. This measures the collinearity of those
neighbourhoods. If we search for an ideal alignment, then
we want to maximize the collinearity, thus minimizing L.

3.2 Finding Keypoints

The first task is to find regions where the keypoints would be
useful. We want to find regions where the alignment measure
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Figure 3: Colour points in neighbourhood clusters around a
pixel. The top row are from a control image with no aberra-
tions chosen randomly and the bottom row is from a photo
with aberrations, chosen at regions of obvious colour fring-
ing. Note that even though the control image may have an
edge, we still have a distinct line whereas the aberration
photos generally have a more spread out distribution every-
where.

L is very high, but at the same time we want to be certain
there is a good possibility for a good alignment. Choosing
regions in the image with high L values is costly, as we have
to compute L for every pixel and examine that image. Also,
it is not guaranteed to give us a good pixel, such as smooth
regions which may have ambiguous results.

A good choice would be to find high gradient regions and
use points from those. Specifically where we know there is
an edge nearby. This gives us a better match since we know
the other two channels should have a high gradient in that
region too. We randomly sample from the norm of the gradi-
ent image with gradient sufficiently high within a threshold.
In addition, if we want to pay the cost of the L image, we
can compute it only in regions where the norm of the gradi-
ent is sufficiently high. If we multiply L by the norm of the
gradient image, and threshold it, we can sample points that
are highly unaligned with enough information around them
to be aligned.

3.3 Finding Disparities

If we want to align two channels to the remaining one (say
align green and blue to the red channel), we need to shift over
all combinations of possible windows, with different scales.
The idea is we want the neighbourhood of the green and blue
channels to be correlated with the red, and those channels
we know may be elsewhere with a different scale. Thus,
we want to minimize the misalignment L(x,y) subject to a
shifted and scaled window in both green and blue channels
SO we can write

L(z,y;dS

G G ;B ;B _B
w,dy,O' 7dx7dy 70- )
With disparities d,, d, and relative scales . Where we it-
erate over all acceptable disparities (as in stereo) and all ac-

ceptable scales. We know however, that the disparities and

scale difference shouldn’t be too large (unless one has a tru-
ely horrible lens) so we can limit the search to local neigh-
bourhoods in that sixtuple. In fact, if the scale difference is
decently small (which it usually is in the case of aberrations)
we can simply look for disparities to find the scale aspect of
the transform. Thus we can write L as

L(x,y;dS,dS . d2,dY)

To be able to handle different scales, one could simply
do an image pyramid based approach as in other computer
vision papers. This is unnecessary, as most aberrations are
not that distant in the scale domain.

The reason why this works is if we have a perfect edge (all
one colour on one side, then all the other colour on the other
side of the edge) in an image then the colours in the neigh-
bourhood will cluster into two distinct regions. Since we are
dealing with a natural image and edges are not perfect, these
clusters will connect in a line as there will be a gradient from
one colour to the other. If the image is misaligned, then this
region will become more spread out. Now if we consider
a multicoloured region, we get a more complicated shape.
However, if we find disparities that minimizes this cluster’s
collinearity, we should get a better aligned image since we’re
minimizing the spread of the whole shape.

3.4 Pruning Keypoints

Although we’ve found keypoints and disparities for those
keypoints in the other two channels, they might not give us
good information. For example, if the best matching L value
for the point neighbourhood was high, we shouldn’t want
to use that point as it is not a very well aligned point. We
only want to use points that have gone from high L value
(unaligned) to low L value (aligned). Since we only chose
points that are unaligned, we just need to prune away the
points that remain unaligned. Thus we only choose points
with a low enough new L value.

Alternatively, since we know we want to do a scale and
translation for each channel (3 degrees of freedom for each)
we only need 2 keypoints (each being 2 dimensional). Thus
we could choose the 2 keypoints with the lowest L value.
Other methods could include weighting the keypoints based
on the L parameter and haven’t been fully explored. In prac-
tice, thresholding by the right amount is sufficient for good
results.

3.5 Computing Image Transforms

Now that we have a set of good points, we can solve for
the transformation pretty easily. Let us consider the red and
green channels for now. We have (pZ,pl?) chosen in the
fixed red channel and a point translated by disparity in the
green channel (p&, p?) We have the equation:
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0 o7 t, Py | = | Py (1)
0o o0 1 1 1

Thus we can rearrange it for this point pair as:

O'G
py 0 1 G pf

If we have a second point we can solve this system for
o, 1S5, the scale, and translation respectively. In prac-
tice, we’d want more than just two points because the points
might have only a good local solution and not global. Thus

we’d want points from different regions of the image.

s}

4 Results

So far this seems to work quite well as seen in figure 1 and
more closely in figure 4. In figure 5, there is an image with
lens distortion where our algorithm is expected to fail. In
figure 6 we have a synthetic image being corrected. As we
can see the correction is quite similar to the original image.
A lot of the high frequency details are a little blurred because
the misaligned image has a lower resolution than the original
image and thus we cannot get those details back.

In figure 7 we have a larger scale change between the dif-
ferent channels. Our algorithm solves this pretty well too.
We can see the keypoints in the third image of this figure and
some matchings aren’t always correct such as the one in the
bottom left pointing in the wrong direction.

In figure 8, we have taken some photos with a lens as-
sembly with chromatic aberrations. These photos are blurry
because it is very hard to focus with this assembly. On the
left we have the original photos and the right we have the cor-
rected versions. Notice that the box is actually worse than the
original whereas the tripod has a slight improvement. These
photos are hard to deal with because the aberration is not as
apparent since all of the colour channels are blurry.

Figure 4: Zoomed in area from figure 1 with original on the
left and corrected on the right.

5 Discussion

If we reduce the neighbourhood size to compute L, we get
more false-positives in the correlations. This is true because
more disparities give a low number. The colours will cluster
into a spherical region in a smooth neighbourhood, whereas
we want lines. It will just choose a random disparity in this
case. For the blurry images in figure 8, this is a similar phe-
nomena and there isn’t enough information in the image for
this method to work well and reliably. Many disparities in
this image regardless of direction gave L a value below 0.01
where less than that is considered a *good’ alignment in re-
gions with more detail.

It was mentioned earlier that we may weight the keypoints
and their appropriate disparities based on how much they re-
duced the alignment measure. Each row of equation 2 would
be multiplied by a function of its associated L. Different
linear and squared error weighting based on L have been at-
tempted with little change in results. One could try to nor-
malize the weights somehow instead of just using L directly.

Also, there might be other statistical methods to ex-
plore to prune the keypoints such as computing the trans-
lation/scaling and getting rid of the outliers using RANSAC.
The computationally expensive part of this algorithm is de-
termining the disparities where we have a 4D loop (without
handling extremely large scale changes). After we have the
disparities it’s much quicker to deal with the keypoint data,
especially since we need so few keypoints.

Another option to consider speedups is perhaps a hierar-
chical approach. One could try to solve the problem with a
reduced resolution image and gradually work our way to the
full resolution image using the lower resolution information.

What isn’t clear but is worth exploring is a statement made
earlier saying that unwarping a distorted image will yield an
image with a chromatic aberration that can be corrected with
a scale/translation. This is worth exploring, as the undistor-
tions relatively fast as well as this algorithm.

Another approach to find keypoints would be to segment
the image into many cells and pick an appropriate keypoint
from each as in section 3.3. This will allow enough infor-
mation from different parts of the image to make a global
warp more accurate than just choosing random points in the
acceptable regions.

One other thing that has been explored is doing the same
thing in gradient domain. Some initial results have shown
that it didn’t work as well as the natural image formations as
in our figures. It is worth exploring trying to align the gradi-
ents in a different way, perhaps using chamfer alignment on
the edges of the channels.

6 Conclusions

We have presented a method that corrects chromatic aberra-
tions in a single image without any use of calibration. Also,
since this method is keypoint based, we don’t need to spend
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Figure 5: An image from http://www.tlc-systems.com/artzen2-0047.htm on the left and on the right a ’corrected’ version. Note
the properly aligned stand but misaligned horse head.

Figure 6: Top: The original image from Google Images. Left: The same image with a different translation shift in two of the
colour channels. Right: A corrected version using our algorithm.
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Figure 7: Top: An image with different translation and relatively large scale shift in two of the colour channels. Left: A
corrected version using our algorithm. Right: The same corrected version showing disparities and keypoints

(b)

(c) (d)

Figure 8: a) An image taken with a lens with large chromatic aberrations. b) A corrected version after using our algorithm.
Similarly for ¢) and d).
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much time to correct a single image. This method also works
well with saturations as it can just ignore those regions by not
choosing keypoints near them.
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